
October 2013 Doc ID 024051 Rev 3 1/45

UM1598
User manual

Application Trace Logger

Introduction

The Application Trace Logger (ATL) provides a unified solution for trace capture and
visualization in STLinux-based systems. It consists of a set of utilities running on the board
(providing support for trace generation) and tools running on the host workstation for trace
capture and display.

The ATL software contains all of the software components required for generating and
capturing trace data. It supports the visualization of that data from the STM-Probe or from
data written to a file by the board application, regardless of the origin of the trace data: user
or kernel, live or post-mortem, system trace or Ethernet.

The ATL includes Multi-target trace (MTT), which is a framework running on the board for
configuring and generating traces. From the user’s point of view, the visible part of MTT is
the API, as described in MTT API Reference manual (Doc ID 023121).

The ATL provides both a GUI and a command line interface on the host. ATL is suitable for
users who do not have specialist knowledge of the underlying trace software.

The Application Trace Logger consists of a set of utilities running on the board (providing
support for trace generation) and tools running on the host workstation (providing trace
capture and display).

This manual assumes that the reader has a basic knowledge of developing embedded
software for STMicroelectronics SoCs and using tracing as a technique for debugging
embedded software.

This document is intended to be a “Quick Start” manual to enable users to start working with
ATL as soon as possible.

www.st.com

http://www.st.com

Contents

2/45 Doc ID 024051 Rev 3

Contents

Preface . 6

Document identification and control . 6

Documentation suite . 6

Conventions used in this guide. 6

Terms and acronyms . 7

Acknowledgements. 8

1 Product overview . 9

1.1 Supported use cases .11

1.2 Interfaces .11

2 Product installation . 12

2.1 Dependencies . 12

2.2 Installation . 12

2.3 Product directory tree . 14

2.3.1 Board directory tree . 15

2.3.2 Host directory tree . 16

2.4 Configure the kernel . 16

2.4.1 Rebuild the kernel . 18

3 Required environment . 19

3.1 Trace capture over an STM port . 19

3.2 Data capture on local storage . 20

4 Getting started . 21

4.1 Launch ATL GUI . 21

4.2 ATL GUI overview . 22

4.3 Trace session management . 23

4.3.1 Configure and launch a trace session . 24

4.3.2 Stop a trace session . 25

4.3.3 Restart a trace session . 25

4.3.4 Archiving a trace session . 26

4.3.5 Reading an archive . 27

Doc ID 024051 Rev 3 3/45

Contents

4

4.3.6 Saving input trace data . 27

4.3.7 Other options . 28

4.3.8 Listen mode only . 29

4.4 Tracing using printk . 29

4.4.1 Enable printk trace capture when the board is running 30

4.4.2 Enable printk from boot time onwards . 30

4.5 KPTrace . 31

4.6 User traces . 32

4.7 Function I/O traces . 32

4.8 Generate trace in files . 32

5 Command line mode . 35

5.1 Launch ATL and configure daemon . 35

5.2 Launch ATL in listen-only mode . 35

5.3 Launch ATL and enable KPTrace . 35

5.4 Launch ATL and save trace file . 35

5.5 Reading a trace file . 36

5.6 Launch KPTrace . 36

5.7 Convert trace file to KPTrace text file . 37

5.8 Launch KPTrace and log trace to trace port . 37

Appendix A Program example using MTT-API to generate traces. 38

A.1 Example overview . 38

A.2 Building the example. 38

A.3 Output trace . 39

Appendix B Kernel module example using MTT-API to generate traces. 40

B.1 Example overview . 40

B.2 MTT API trace points. 41

B.2.1 Checking the frequency and duration of the read operation (user space) .
41

B.2.2 Notifying a quality of service problem with a simple string 41

B.2.3 Non-intrusive flagging of the read wait/wakeup in the kernel module. . . 41

B.3 Building and installing on the board . 41

B.4 Output trace . 42

Contents

4/45 Doc ID 024051 Rev 3

Appendix C mttd . 43

Revision history . 44

Doc ID 024051 Rev 3 5/45

List of figures

5

List of figures

Figure 1. Overview. 9
Figure 2. Components generating traces on the board . 10
Figure 3. Install Java and graphics libraries. 12
Figure 4. Trace infrastructure in the kernel . 17
Figure 5. System trace module in the kernel . 18
Figure 6. Typical setup when using trace capture over an STM port. 19
Figure 7. Typical setup when using trace capture on local file system . 20
Figure 8. ATL workspace launcher . 21
Figure 9. ATL main view . 22
Figure 10. Trace session configuration window. 23
Figure 11. Connect to a board . 24
Figure 12. Trace capture configuration . 25
Figure 13. Select export archive icon. 26
Figure 14. Export archive window . 26
Figure 15. Select import archive icon. 27
Figure 16. Storing input traces in a raw STP format . 28
Figure 17. printk routed to MTT at boot time . 30
Figure 18. Enabling KPTrace. 31
Figure 19. Configure Session window . 33
Figure 20. Example of MTT API usage . 38
Figure 21. Output trace . 39
Figure 22. Output in the GUI . 39
Figure 23. MTT-API kernel example overview. 40
Figure 24. Example code . 41
Figure 25. Output trace . 42

Preface

6/45 Doc ID 024051 Rev 3

Preface

Comments on this manual should be made by contacting your local STMicroelectronics
sales office or distributor.

Document identification and control

Each book in the documentation suite carries a unique identifier of the form:

Doc ID nnnnnnn Rev x

where, nnnnnnn is the document number, and x is the revision.

Whenever making comments on a document, the complete identification nnnnnnn Rev x
should be quoted.

Documentation suite

Application Trace Logger user manual (Doc ID 024051)

This document provides information on how to use the STLinux trace implementation.

Application Trace Logger graphical interface HTML documentation

This is the Application Trace logger graphical interface documentation, in HTML format,
accessible from a web browser (such as Internet Explorer).

MTT API Reference manual (Doc ID 023121)

This manual contains a full description of the MTT API for instrumenting code in user and
kernel space.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

 sample code, keyboard input and file names

 variables, code variables and code comments

 equations and math

 screens, windows, dialog boxes and tool names, instructions

Doc ID 024051 Rev 3 7/45

Preface

8

Software notation

 Syntax definitions are presented in a modified Backus-Naur Form (BNF).

 Terminal strings of the language, that is those not built up by rules of the language, are
printed in teletype font. For example, void.

 Non-terminal strings of the language, that is those built up by rules of the language, are
printed in italic teletype font. For example, name.

 If a non-terminal string of the language starts with a non-italicized part, it is equivalent
to the same non-terminal string without that non-italicized part. For example, vspace-
name.

 Each phrase definition is built up using a double colon and an equals sign to separate
the two sides (‘::=’).

 Alternatives are separated by vertical bars (‘|’).

 Optional sequences are enclosed in square brackets (‘[’ and ‘]’).

 Items which may be repeated appear in braces (‘{’ and ‘}’).

Terms and acronyms

Table 1 lists some of the acronyms used in this document that the reader may be less
familiar with.

Table 1. Acronyms used in this document

Acronym Definition

ATL Application Trace Logger

STM System Trace Module

GUI Graphical User Interface

MTT Multi-Target Trace (the trace engine running on the board)

RPM RPM Package Manager (see http://rpm.org.)

RCP Rich Client Platform

STP System Trace Protocol (see http://www.mipi.org/specifications/debug.)

YUM
Yellow dog Updater, Modified (see http://linux.duke.edu/projects/yum/)
STMYUM is a version of YUM that has been customised for STLinux.

Preface

8/45 Doc ID 024051 Rev 3

Acknowledgements

 Java, Java runtime environment, JavaScript and Sun are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

 Microsoft, Windows, Windows XP and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

 Adobe, Acrobat and the Acrobat logo are trademarks of Adobe Systems Incorporated,
which may be registered in certain jurisdictions.

 Linux is a registered trademark of Linus Torvalds.

 Red Hat is a registered trademark and RPM is a trademark of Red Hat Software, Inc.

 Ubuntu is a trademark of Canonical Ltd.

 The Ubuntu logo is a registered trademark of Canonical Ltd.

Doc ID 024051 Rev 3 9/45

Product overview

43

1 Product overview

Application Trace Logger (ATL) is a host application to log trace messages generated by the
Multi-Target Trace (MTT) library or other sources, such as printk. Trace messages can be
logged without the need for any specialist knowledge of the trace software.

Note: For more information about the MTT library, see the MTT API Reference manual (Doc ID
023121)

ATL can log all software traces, regardless of their origins. It can log traces from user or
kernel space, live or post-mortem, system trace port or filesystem.

The tool natively supports the STM-Probe trace capture box, and optionally is able to
connect to commonly used third party capture probes and import trace data in their native
formats.

The tool consists of components that run on the host and the board (as shown in Figure 1).

 On the host: the tools mttatl and mttalgui. These configure and capture traces from a
board, either from the command line or from a GUI.

 On the board: the tools for generating traces. (These are shown in more detail in
Figure 2).

Figure 1. Overview

ATL

mttatl
(console mode)

mttatlgui
(console mode)

STM-Probe

STM Ethernet

The ATL processes on
the SoC are described

in Figure 2.

running on the hostrunning on the board
ATL

Product overview

10/45 Doc ID 024051 Rev 3

Figure 2. Components generating traces on the board

ATL communicates with the board in two ways.

 Configuration is done through a TCP-IP socket connection. When an IP address is
specified when using ATL, ATL uses that IP address for configuration. Configuration
allows the user to setup KPTrace, trace levels, trace start/stop, and so forth.

 Data capture is done though trace transport mechanism. This is typically STM through
STM-Probe, but local storage can also be used.

There are exceptional cases, such as boot log or when STLinux is not running
(bare-machine only), where no configuration service is listening. In these cases, ATL does
not need to connect to the board but simply listens on the STM port.

STLinux user space

STLinux kernel space

Application MTT daemon

MTT API

MTT
driver

M
T

T
 A

P
I

Media interface

OS instrumentation

Kernel module

Kernel printk()

 (KPTrace trace points)

using API calls

Doc ID 024051 Rev 3 11/45

Product overview

43

1.1 Supported use cases

ATL can be used to generate and display traces in any combination of the cases listed in
Table 2.

1.2 Interfaces

ATL provides the following types of interfaces for software traces on STLinux:

 configuration and control, using a socket connection

 trace acquisition, typically using an STM port

The configuration and control of the tracing is performed by a daemon called mttd. This
daemon is controlled in any of the following ways:

 from the remote host, using ATL either in command line mode (mttatl) or from the GUI
(mttatlgui, which is a front-end to the command line tool)

 using the direct command /etc/init.d/mttd

If the daemon is not running, data acquisition only can be launched from the remote host
using either a command line user interface or a GUI.

 The graphical user interface is mttatlgui. This provides a graphical front end on top of
the command line tool.

 The command line interface is mttatl.

For backward compatibility, there is also a kptrace user agent and a utility named mtt2kpt
for generating KPTrace text files.

All output data are compliant with the MTT data protocol, and can be displayed by ATL in the
host workstation.

Table 2. Supported use cases

Use case Board Remote host Comments

Kernel space:
printk

printk routed to MTT
console service

– Decode MTT protocol

– On the fly display of user
payload

ATL provides a console
service mttS:
bootargs console=mttS

User space:
User trace points Manual instrumentation

using MTT-API calls
– Connect to the board

– Configure trace generation
(items to trace, filter level and
so forth)

– Decode MTT protocol

– on the fly display of user
payload

See MTT API reference
manual (Doc ID 023121).Kernel space:

User trace points

Kernel space:
kernel traces

KPTrace
KPTrace (kprobes) trace
points routed to STM port /
Using MTT protocol.

User space:
function I/Os

Instrumentation through
compiler options

Option:
-finstrument-functions

Product installation

12/45 Doc ID 024051 Rev 3

2 Product installation

The product is packaged as three RPMs:

 Application Trace Logger for the host workstation

 KPTrace package for the host workstation

 KPTrace package for the board

ATL is an integral part of the SDK2 package. When installing SDK2, ATL and its
dependencies are automatically installed by default. The ATL components are listed in the
SDK2 file armv7.rpmlist, as follows:

 stlinux24-host-mttatl-<version>

 stlinux24-host-kptrace-<version>

 stlinux24-${ARCH}-kptrace-<version>

Section 2.1 and Section 2.2 describe how to complete a manual installation or update. It is
not necessary to complete these steps if SDK2 has already been installed.

2.1 Dependencies

The ATL contains an Eclipse-based Rich Client Platform application that has dependencies
upon Java and certain graphical libraries. These dependent packages must be installed
before the ATL.

Figure 3 lists the commands to install these packages on a freshly installed Fedora 17-64
machine.

Figure 3. Install Java and graphics libraries

2.2 Installation

When installing ATL, STMicroelectronics recommend that you install corresponding
versions of KPTrace to avoid the risk of version mismatch.

 stlinux24-host-mttatl-<version>.i386.rpm, containing the host workstation
mttatl package, including:

– mttatl, the command line interface to launch a trace session on the board

– mttatlgui, the graphical interface launcher

yum -y update
yum -y install java-1.7.0-openjdk.i*
yum -y install perl libICE.i686 ORBit2.i686 libSM.i686 libX11.i686
libXft.i686 libXrender.i686 libXt.i686 libart_lgpl.i686 atk.i686
libbonobo.i686 glibc.i686 cairo.i686 libbonoboui.i686 fontconfig.i686
freetype.i686 libgcc.i686 GConf2.i686 gtk2.i686 gdk-pixbuf2.i686
glib2.i686 libgnome.i686 libgnome-keyring.i686 libgnomecanvas.i686
libgnomeui.i686 gnome-vfs2.i686 xulrunner.i686 pango.i686 nspr.i686
popt.i686 nss-softokn.i686 nss.i686 libstdc++.i686 libusb1.i686
libxml2.i686 zlib.i686 libstdc++PackageKit-gtk3-module.i686
libcanberra-gtk2.i686 gtk2-engines.i686

Doc ID 024051 Rev 3 13/45

Product installation

43

 stlinux24-armv7-kptrace-4.<version>.armv7.rpm, containing:

– the kptrace user command

– mttd trace daemon for enabling and disabling trace, to configure the trace output
port and the init.d component for mttd

– mtt2kpt utility for converting a raw trace file to a KPTrace text file

– libmtt.{so,a} and libkptrace.so for user-space traces

– mtt.h , mtt_types.h and kptrace.h

 stlinux24-host-kptrace-4.<version>.i386.rpm, containing:

– mtt2kpt utility for converting a raw trace file to a KPTrace text file

– Kptrace.pl utility to display KPTrace trace files with symbol resolution

Use the following command lines to install ATL using stmyum:

stmyum install -y stlinux24-host-mttatl-<version>.i386

stmyum install -y stlinux24-host-kptrace-4.<version>.i386

stmyum install -y stlinux24-armv7-kptrace-4.<version>.armv7

Use the following command lines to install ATL using rpm:

rpm -Uvh stlinux24-host-mttatl-<version>.i386.rpm

rpm -Uvh stlinux24-host-kptrace-4.<version>.i386.rpm

rpm -Uvh stlinux24-host-armv7-kptrace-4.<version>.armv7.rpm --ignoreach

Note: The ATL package has dependencies on other packages. These packages will be installed
by the stmyum command, as the dependency rules are predefined.

Note: There are several alternative ARMv7 packages available, each built in a different way. If a
library is not specified in the name of the package, the package is built with glibc.

Note: If you have an earlier version of ATL installed, you may see the following error message:

error: Failed dependencies:

stlinux24-host-traceinfrastructure = 2012.2-2 is needed by (installed)
stlinux24-host-sdk2-armv7-development-filesystem-<sdk2-version>-int<intern
al-sdk2-buildid-number>.noarch

stlinux24-host-traceinfrastructure = 2012.2-2 is needed by (installed)
stlinux24-host-sdk2-armv7-development-<SDK2-BUILDID>-<sdk2-version>-int<in
ternal-sdk2-buildid-number>.noarch

To proceed with the installation as described above, first use the following commands to
remove the failed installation:

rpm -e stlinux24-host-sdk2-armv7-development-filesystem-<sdk2-version>

rpm -e stlinux24-host-sdk2-armv7-development-<SDK2-BUILDID>-<sdk2-version>

Product installation

14/45 Doc ID 024051 Rev 3

Note: If you have an earlier version of ATL installed, you may see an error similar to the following
displayed during installation. This error occurs because the arrangement of the packages
has been simplified.

file /opt/STM/STLinux-2.4/devkit/armv7/target/usr/bin/mttd from install of
stlinux24-armv7-kptrace-4.0.0_<version>.armv7 conflicts with file from
package stlinux24-armv7-mttatl-1.1-3.armv7

To prevent this error, use the following command to remove the previous package before
installing the new one:

rpm -e stlinux24-armv7-mttatl-1.1-3

Next, re-run the installation.

rpm -Uvh stlinux24-armv7-kptrace-4.<version>.armv7.rpm --ignorearch

2.3 Product directory tree

The following sections describe the location and the contents of each of these three parts.

In the following sections, <STLINUXINSTALL> is the path of the installation directory of the
STLinux distribution. (For the standard STLinux 2.4 distribution this defaults to
/opt/STM/STLinux-2.4/.) The examples throughout Section 2.3 use the environment
variable ${STLINUXINSTALL} to define the installation path.

Doc ID 024051 Rev 3 15/45

Product installation

43

2.3.1 Board directory tree

The board binaries are installed in the following location on the host:

${STLINUXINSTALL}/devkit/armv7/target/

The files are listed in Table 3. The paths given in Table 3 are in respect of the board
filesystem.

Table 3. Location of board binaries

Location File Comments

${STLINUXINSTALL}/devkit/armv7/target/

etc/rc.d/rc3.d

S99mttd Link to /etc/init.d/mttd

etc/init.d

mttd The MTT daemon script.

kptrace.conf A copy of kptrace.min.conf

kptrace.full.conf KPTrace full configuration.

kptrace.min.conf KPTrace minimal configuration.

/usr/bin/

mtt2kpt Utility to extract KPTrace text files from raw trace.

mttd The MTT daemon.

kptrace Command line utility to start and stop KPTrace.

/usr/include/

kptrace.h

MTT API header files.mtt.h

mtt_types.h

/usr/lib/

libkptrace.so A link to libmtt.so.

libmtt.so
MTT API implementation for Linux user space.

libmtt.a

/usr/share/man/man1

kptrace.1 man file for KPTrace.

mtt2kpt.1 man file for the mtt2kpt utility.

Product installation

16/45 Doc ID 024051 Rev 3

2.3.2 Host directory tree

The host tools are installed in the following locations: The files are listed in Table 4.

Note: mttatl and mttatlgui are both scripts that set essential environment variables before calling
the associated executables. Executables should not be called directly as they need the
appropriate environment variables.

2.4 Configure the kernel

STMicroelectronics recommends that first you copy the directory
${STLINUXINSTALL}/devkit/build to a temporary working directory (<dev-dir>)
before performing any configuration. Then, run the following commands:

cd <dev-dir>/sdk2-build.b2020_a9
make menuconfig

Table 4. Location of host tools

Location File Comments

/opt/STM/STLinux-2.4/host/

bin/

mtt2kpt
Utility to extract KPTrace
text files from raw trace.

kptrace.pl

man/

mtt2kpt.1
Utility to extract KPTrace
files from MTT files.

/opt/STM/STLinux-2.4/mttatl/

bin/

mttatl ATL command line tool.

mttatlgui ATL GUI tool.

documentation/ Documentation directory.

firmware/
STM-Probe related
software.

system/ System setup utilities.

trcviewer/ Graphical user interface.

/opt/STM/STLinux-2.4/host/doc

stlinux24-host-mttatl-<version> License files

Doc ID 024051 Rev 3 17/45

Product installation

43

The MTT support option is in the category Kernel hacking: Multi-Target Trace
(MTT) infrastructure support in menuconfig.

 Check that an entry for configuring MTT support appears in the menuconfig output,
as shown in Figure 4.

 Enable KPTrace as a built-in, as also shown in Figure 4.

 Check that the System Trace Module driver support is enabled, in section Device
Drivers > STM specific devices as illustrated in Figure 5.

Figure 4. Trace infrastructure in the kernel

Product installation

18/45 Doc ID 024051 Rev 3

Figure 5. System trace module in the kernel

2.4.1 Rebuild the kernel

Rebuild the kernel to enable the support. The command is:

make clean all

Doc ID 024051 Rev 3 19/45

Required environment

43

3 Required environment

3.1 Trace capture over an STM port

Figure 6 shows a diagram of the typical setup for using trace capture over the STM port of
the SoC.

Figure 6. Typical setup when using trace capture over an STM port

Note: The STM-Probe connects to the host using USB. The STMC2 connection is an electrical
relay from the board.

Note: When using a board with a MIPI-34 connecction, it is important to use an IO converter to
interface with the LVDS cable. The IO converter must be a "Type-H" as this is the only
version that routes the STM signal from MIPI to LVDS.

Corporate network

VLAN-Lab

Ethernet
Ethernet

Ethernet

Serial Relay

STMC2

STM-Probe

LVDS/
MIPI-34

Linux
Server

USB connection to
the host

Board

Required environment

20/45 Doc ID 024051 Rev 3

3.2 Data capture on local storage

Figure 7 shows a diagram the typical setup for using trace capture on local storage on the
board file system.

Figure 7. Typical setup when using trace capture on local file system

VLAN-Lab

Serial RelayEthernet
Ethernet

Ethernet

Linux server
(NFS server)

STMC2

LVDS /
MIPI-34

Board

Doc ID 024051 Rev 3 21/45

Getting started

43

4 Getting started

This chapter describes how to use the ATL GUI.

4.1 Launch ATL GUI

The launcher is located in ${STLINUXINSTALL}/host/mttatl/bin, where
${STLINUXINSTALL} is the path to the STLinux distribution. (In the standard STLinux
distribution, this is /opt/STM/STLinux-2.4/.)

Start ATL from a shell by entering:

${STLINUXINSTALL}/host/mttatl/bin/mttatlgui

When ATL launches, it first displays the Application Trace Logger Launcher dialog (see
Figure 8).

By default the working directory is your home directory, but you may change it to a different
directory if you wish. Use this dialog to enter or select the location of the working directory.
This is the directory where the project data, files and directories are stored.

If the named working directory does not already exist, it is created. The default name for this
directory of /home/${USER}/.mttlatl/workspace.

Note: Do not use spaces in the working directory path and name as this may cause problems with
the tools.

Note: Trace sessions are stored by default in this directory. Make sure that there is sufficient disk
space for the trace files.

Figure 8. ATL workspace launcher

Getting started

22/45 Doc ID 024051 Rev 3

Click OK to display the main ATL window. See Figure 9.

4.2 ATL GUI overview

The ATL GUI provides several views for the user. These are:

 Trace to display the trace data as it is generated (as though displayed in a console)

 Session Status to provide information regarding underlying tools, connection status
and statistics

 Details to provide a detailed view of traces selected in the main trace window

 Console to provide information regarding underlying tools

 Error log to display messages from the Graphical User Interface

 Terminal to provide support to connect to the board using ssh

By default, the GUI perspective (that is, the arrangement of views) is organized so that three
of these views (Trace, Session Status and Details) are prominent. See Figure 9:

This arrangement can be altered by reducing or maximizing any given view or by selecting
and moving the window tabs. On exit from the GUI, the GUI saves the current perspective.
On re-launch, the GUI opens with the most recent saved perspective.

The perspective can be reset to the default settings by selecting File > Reset Perspective
from the menus.

Figure 9. ATL main view

Doc ID 024051 Rev 3 23/45

Getting started

43

4.3 Trace session management

Two main scenarios are available from the GUI.

 Trace capture only (that is, without any on-board configuration). Use this configuration
to trace printk messages from boot only.

 Trace capture with configuration of the MTT daemon. Use this configuration for all trace
use cases except tracing printk messages from boot.

The first step in both scenarios is to configure and launch a trace session. To do this, select
Session > Configure.

The ATL GUI displays a dialog box describing the session (see Figure 10).

Figure 10. Trace session configuration window

Getting started

24/45 Doc ID 024051 Rev 3

4.3.1 Configure and launch a trace session

Trace session configuration consists of attaching to the board to send configuration
commands to the MTT daemon running on the board. The configuration is carried out
through a socket connection.

The procedure is as follows:

1. Enter the board IP address in the Address/Name text field.

2. Select the capture mode: If you do not have an STM-Probe connected you must
choose “Board FileSystem”.

3. Select the type of SoC that you are using. The System Trace protocol is different for
different SoC families, so it is important that the trace capture chain is configured
correctly. (This step is only relevant for trace over trace port.)

4. Click Save & Run. This action closes the session configuration dialog and launches
the trace acquisition chain on the host side. On the board side, it configures the MTT
daemon to generate traces according to the selected capture mode and enables trace
generation.

Figure 11 illustrates trace session configuration over the trace port (“Probe” is selected).

Figure 11. Connect to a board

Doc ID 024051 Rev 3 25/45

Getting started

43

The information that appears in the console window is shown in Figure 12.

Figure 12. Trace capture configuration

The GUI may display some data in the trace window. This shows that the trace framework
on the board is configured and ready.

From this point, the ATL displays any data logged over the trace port as it is received.

The configuration is saved as a session that can be re-used later.

4.3.2 Stop a trace session

Either press the “Stop” shortcut (red box) or select Session > Stop.

If KPTrace is enabled, stopping a trace session may take a few moments to complete as the
kprobes trace points must first be disabled.

4.3.3 Restart a trace session

Press the “Start” shortcut (green arrow) or select Session > Start.

This launches the latest configured trace session.

Getting started

26/45 Doc ID 024051 Rev 3

4.3.4 Archiving a trace session

Trace data can be archived in a database for later use. Because the data have already been
processed, this functionality enables the data to be processed quickly.

Export trace data by clicking on the export archive icon (see Figure 13).

Figure 13. Select export archive icon

This opens the export panel to specify the file path where to export the trace archive (as
shown in Figure 14).

Figure 14. Export archive window

Doc ID 024051 Rev 3 27/45

Getting started

43

4.3.5 Reading an archive

An exported archive can be re-opened by clicking on the import archive icon. See Figure 15.

Figure 15. Select import archive icon

4.3.6 Saving input trace data

Input traces can also be stored in a raw binary file that can be opened off-line at a later date.
The tool supports an STP binary output format that keeps the STM level information
(initiator, channel and timestamp) plus MTT trace data.

In the Decoding tab (see Figure 16), set the option -O stp in the Option field.

Click on Save or Save & Run to save the trace data in a file. The file is saved in the working
directory and takes the name of the session concatenated with the qualifier _stp and the
extension .bin. In the example shown in Figure 16, the trace file takes the name:

/home/ds25/.mttatl/workspace/Session_1_stp.bin

Getting started

28/45 Doc ID 024051 Rev 3

Figure 16. Storing input traces in a raw STP format

Note: Make sure that you have sufficient disk space at the destination location when enabling
trace storage.

4.3.7 Other options

The trace configuration dialog has other tabs allowing other configuration parameters (see
Figure 10 on page 23). You can use the Decoding tab to pass more options to the
underlying decode tools.

Detect unknown frames

In the Decoding tab, the Verbose button is a shortcut that enables the option
--display-unknown for the underlying decoder. This can be enabled for diagnostic or
display of unrecognized binary frames.

Board specific option

This option is enabled by default and is mandatory for all STiH415 and STiH416 board
families. It fixes hardware defects on the MIPI-34 connector. This option enables the
--stmprobe-novrefdetect option.

Doc ID 024051 Rev 3 29/45

Getting started

43

More options

The Options field of the Decoding tab provides the ability to edit the command line. All
underlying tool options not handled by shortcuts described above can be passed through
the command line.

Refer to the mttatl man page for a list of all available options.

4.3.8 Listen mode only

In the situation where the on-board daemon is not running (which will always be the case if
the board has not been started) it is not possible to connect and configure the trace
generation. This means that ATL can only listen on the trace port and must rely on the
board’s default configuration.

In these circumstances, use the following procedure.

1. Do not enter a board IP address in the Address/Name text field. Because ATL
assumes that the board has not yet booted, it generates an error message when
attempting to connect to the un-booted board. In this case, the default trace port is STM
port / STM-Probe.

2. Click Save & Run. This closes the session configuration window and launches the
trace acquisition chain on the host side. From this point, ATL listens on the STM port
and does not configure anything on the board.

From this point onwards, ATL displays any printk messages logged over the trace port as
if the MTT console is enabled.

When ATL starts operating in this mode, it is not possible to configure the trace session. The
only way to configure a trace session on the board is to stop the current session and
configure a new trace session as described in Section 4.3.1: Configure and launch a trace
session on page 24.

4.4 Tracing using printk

ATL provides a number of useful features to assist with tracing using printk. These are
described in this section.

MTT provides console support to route printk to MTT. This takes advantage of the STM
port rather than UART.

To enable MTT as console output, the boot arguments must contain the following:

console=mttS

STMicroelectronics does not recommend enabling both UART and MTT for console output.
This is because UART can introduce huge amounts of latency and increase the interrupt
rate.

It is also preferable to remove the standard setting of console=ttyAS0,115200 when
setting up the MTT console.

Note: When using SDK2, bootargs can be tuned using the following command before booting the
board.

export COMMON_BOOTARGS="console=mttS"

Getting started

30/45 Doc ID 024051 Rev 3

4.4.1 Enable printk trace capture when the board is running

When the board has been booted, a connection specifying the board IP enables trace
capture for all kind of traces, including printk if the mttS console is enabled.

To launch trace acquisition, see Section 4.3.1: Configure and launch a trace session on
page 24.

4.4.2 Enable printk from boot time onwards

When using the mttS console, printk can be traced from boot time. This is because the
Multi Target Trace infrastructure support is resident in the kernel as illustrated in Figure 4.

If the board has not been booted, or if you are only interested in printk traces, it is not
necessary to specify the board IP address when launching the tool. To launch trace
acquisition in this mode, see Section 4.3.8: Listen mode only on page 29.

When using the boot argument console=mttS, output from printk is logged to the STM
port from the boot onwards. Figure 17 shows printk during the boot sequence.

Figure 17. printk routed to MTT at boot time

Doc ID 024051 Rev 3 31/45

Getting started

43

4.5 KPTrace

Enable KPTrace from the trace configuration tab (as shown in Figure 18).

When a trace session is launched, the core that is running STLinux is sent a notification to
enable KPTrace (consisting of enabling a KProbe for each trace point specified in the
kptrace.conf configuration file).

KPTrace uses the configuration file specified in /etc.

To toggle KPTrace activation, stop and restart the session. It cannot be toggled dynamically
during a running trace session.

Figure 18. Enabling KPTrace

When the session has been stopped, ATL imports the traces into the working directory
specified when launching the tool. (By default, the working directory is
/home/${USER}/.mttatl/workspace)

Traces can be stored in a custom session directory named as follows:

<Working Directory>/<SessionName>-<Unique ID>

Note: The session directory name is visible in the top of the Console view.

Getting started

32/45 Doc ID 024051 Rev 3

The contents of the session directory is as follows:

 <SessionName>-00.kpt: KPTrace file for core 0

 <SessionName>-01.kpt: KPTrace file for core 1

 <SessionName>.kpm: symbol file (a copy of /proc/kallsyms)

 <SessionName>.meta: running processes at KPTrace startup

 <SessionName>_stp.bin: raw input data received from the trace port.

The session directory can then be imported into STWorkbench to display the kernel activity
time-chart.

4.6 User traces

User traces are generated when using MTT API, either from user or kernel space.

User trace capture requires configuring the board to enable trace generation over the
selected output port.

To launch trace acquisition, see Section 4.3.1: Configure and launch a trace session on
page 24.

Refer to Appendix A: Program example using MTT-API to generate traces on page 38 and
Appendix B: Kernel module example using MTT-API to generate traces on page 40 for
examples.

The user trace API also provides support to KPTrace user traces (kpprintf,
kptrace_write_record, kptrace_mark).

4.7 Function I/O traces

The user space MTT shared library provides the support to log function I/O traces by
implementing the following functions:

__cyg_profile_func_enter (void *func , void *callsite)
__cyg_profile_func_exit (void *func , void *callsite)

To enable this functionality, compile the code with the option --finstrument-function.

It is also necessary to initialize the trace connection by adding the relevant initialization call
to the code:

mtt_initialize(NULL);

This initialization enables the trace mechanism for the current process.

To launch trace acquisition, see Section 4.3.1: Configure and launch a trace session on
page 24.

4.8 Generate trace in files

Trace can be generated into a file on the board file system by selecting the “Board
filesystem” capture mode.

A board local directory to record the session can be specified too.

Note: The Session directory must be created before launching trace capture.

Doc ID 024051 Rev 3 33/45

Getting started

43

Figure 19. Configure Session window

There is no display while the session is running because the data is stored locally on the
board file system.

When the session is stopped, ATL imports the trace files to the host workstation, displays
their contents in the ATL window and saves them in a session directory. The directory is
named according to the following naming convention:

<Working Directory>/<SessionName>-<UniqueSession-ID>

Note: The session directory name is visible in the top of the “Console” view

The session directory contains the following files:

 <SessionName>-00.mtt: Trace file for core 0

 <SessionName>-01.mtt: Trace file for core 1

 <SessionName>.kpm: Symbol file (image of /proc/kallsyms)

 <SessionName>.meta: Running processes at session startup

If a process instrumented with MTT or the KPTrace API has been launched during the trace
session, it is saved in a file that is named according to the following naming convention:

<prefixName>_<PIDno>.mtt

Getting started

34/45 Doc ID 024051 Rev 3

If KPTrace was enabled, the KPTrace text files can be extracted from the MTT trace files by
using the mtt2kpt utility. This utility is described in Section 5.7: Convert trace file to KPTrace
text file on page 37.

Doc ID 024051 Rev 3 35/45

Command line mode

43

5 Command line mode

This chapter describes how to use the ATL command line interface. In addition to this
chapter, detailed information on the options and command line utilities can be found in the
mttatl man page and the mttcontrol man page.

5.1 Launch ATL and configure daemon

When the board is booted, invoke ATL with the following command to configure and enable
trace generation using MTT and capture over STM.

mttatl <Board-IP-address> -m probe

5.2 Launch ATL in listen-only mode

When there is no board IP address or name specified in the arguments, the ATL launches
the trace capture chain and starts listening on the STM port.

The command is the following:

mttatl -m probe

Note: Default mode when mttatl is used without any option is “-m probe”.

This decodes and displays on-the-fly any data sent over the trace port.

5.3 Launch ATL and enable KPTrace

When the board is booted, invoking ATL configures and enables KPTrace, trace generation
using MTT and capture over STM.

mttatl <Board IP Address> -m probe –k

This command generates the same traces as described in Section 4.5 on page 31.

5.4 Launch ATL and save trace file

Input traces can be stored in a raw binary file and then re-opened off-line.

The arguments are:

 -O stp: enable saving traces in a raw format (including STM header) for
post-processing

 -o <filename>: name of the file to store. Extension _stp.bin is added. The
default value is mtt

 -H <directory>: name of the directory where to store the generated trace file.
Default value is “.” (current directory)

The following example generates mtt.bin in the current directory:

mttatl 10.18.190.56 -m probe -O stp

This example generates mytrace.bin file in the /tmp directory.

mttatl 10.18.190.56 -m probe -o mytrace -H /tmp -O stp

Command line mode

36/45 Doc ID 024051 Rev 3

5.5 Reading a trace file

Use the following command to read a raw binary file (called rawxtitraces_TM2.bin) and
save it in an output file named outdata in the directory /tmp. The command specifies the
message descriptor file to apply when decoding the traces.

./mttatl -o outdata -H /tmp rawxtitraces_TM2.bin

5.6 Launch KPTrace

KPTrace can be launched from the board command line prompt as follows:

#> kptrace

By default, the trace data is stored in a file. When tracing begins, KPTrace displays a
message on the console giving the path to the location where the trace data is stored (as
shown in the following example output. where the location is /root/kptrace):

Tracing to file
Writing session data to folder /root/kptrace
Started tracing on localhost
Tracing.... Ctrl+C to stop

To differentiate between multiple trace sessions, it is possible to specify a custom trace
session directory and a session ID, as follows:

mkdir -p /root/MySession
kptrace -T /root/MySession -i 34 -o hello

In this example, the trace session is created in /root/MySession/hello-34.

Note: The custom directory to be used must have been created before launching KPTrace. If not.
KPTrace will exit with an error message.

Note: The same session name is re-used for subsequent KPTrace launches until a new name is
specified. Use the following command to reset the session name and trace file name to the
default:

kptrace -T root -i -1 -o kptrace

The session folder contains the following files:

 hell-00.mtt: KPTrace file for core 0

 hell-01.mtt: KPTrace file for core 1

 hell.kpm : Symbol file (a copy of /proc/kallsyms)

 hell.meta: Running processes at KPTrace startup

If processes instrumented with KPTrace or MTT API are executed during the session, they
are stored in the same session as follows:

<prefixName>_<PIDno>.mtt

See the KPTrace man page for more information.

Doc ID 024051 Rev 3 37/45

Command line mode

43

5.7 Convert trace file to KPTrace text file

Since KPTrace V4, KPTrace does not perform any text formatting of the trace output stream
of the kprobes implementation. The trace events are output in a raw binary format. This has
been done in order to reduce intrusiveness in the tracing.

The ATL provides a utility called mtt2kpt to reformat the raw binary files as text (ASCII) files.
This utility is invoked with the following command line:

mtt2kpt --session=/root/ MySession /hello-34

This generates the following files

 hello-00.kpt: KPTrace text file for core 0

 hello-01.kpt: KPTrace text file for core 1

See mtt2kpt man page for more details.

Note: The mtt2kpt utility is available both on the board and host workstations.

5.8 Launch KPTrace and log trace to trace port

It is possible to launch KPTrace from the board command prompt and log traces on the
trace port. To do this, complete the following steps.

1. On the host workstation, launch ATL without specifying a board IP address.

This is described in Section 4.3.8: Listen mode only on page 29 (if using the GUI) or
Section 5.2: Launch ATL in listen-only mode on page 35 (if using the command line).

2. On the board command prompt, launch KPTrace specifying that you want to log traces
on the trace port, as follows:

kptrace -m probe

Program example using MTT-API to generate traces

38/45 Doc ID 024051 Rev 3

Appendix A Program example using MTT-API to generate
traces

A.1 Example overview

In order to use MTT tracing in a program, include the MTT header file:

#include "mtt.h"

Declare a trace component handle:

mtt_comp_handle_t mymtthandle = NULL;

Figure 20 shows example code that uses MTT API calls.

Figure 20. Example of MTT API usage

A.2 Building the example

Build this example with the following options:

-I /opt/STM/STLinux-2.4/devkit/armv7/target/usr/include

-L /opt/STM/STLinux-2.4/devkit/armv7/target/usr/lib -lmtt

char hello[] = "Hello";
char world[] = "World";
char helloworld[] = "Hello World !";
uint32_t hwvector1[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

…
mtt_initialize(NULL);
mtt_open(MTT_COMP_ID_ANY, "HelloWorld-Player", &mymtthandle);
mtt_print(mymtthandle, MTT_LEVEL_INFO, "%s %s !", hello, world);
mtt_trace(mymtthandle, MTT_LEVEL_INFO, MTT_TRACEITEM_STRING(strlen(helloworld)),

helloworld, NULL);
mtt_trace(mymtthandle, MTT_LEVEL_INFO, MTT_TRACEVECTOR_UINT32(10), hwvector1,

"data0");
mtt_print(mymtthandle, MTT_LEVEL_INFO, "bye.");
mtt_close(mymtthandle);
mtt_uninitialize();

…

Doc ID 024051 Rev 3 39/45

Program example using MTT-API to generate traces

43

A.3 Output trace

Figure 21. Output trace

Figure 22. Output in the GUI

0:57:25.717003 ARM0: GET_CNAME: Component 0x00000003 has been renamed "pid_00842"
0:57:25.717023 ARM0: GET_CNAME: Component 0x00000004 has been renamed
"HelloWorld-Player"
0:57:25.717034 ARM0: HelloWorld-Player: "Hello World !"
0:57:25.717047 ARM0: HelloWorld-Player: "Hello World !"
0:57:25.717061 ARM0: HelloWorld-Player: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 data0
0:57:25.717074 ARM0: HelloWorld-Player: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23 prime10
0:57:25.717079 ARM0: HelloWorld-Player: "bye."
0:57:25.717101 ARM0: HelloWorld-Player: "CLOSE [HelloWorld-Player]
CID:4(0x00000004) (port 19-0x00000013)"
0:57:25.717122 ARM0: pid_00842: "CLOSE [pid_00842] CID:3(0x00000003) (port
18-0x00000012)"

Kernel module example using MTT-API to generate traces

40/45 Doc ID 024051 Rev 3

Appendix B Kernel module example using MTT-API to
generate traces

B.1 Example overview

The example in the kernel sample/mtt folder simulates a simple block of data streaming
with quality of service incidents caused by hardware contention. The purpose of this
example is to demonstrate how trace can be used to check the dynamics of the application
and to pin-point the source of data dropouts.

The application consists of a driver module and a user mode client. The client creates two
threads:

 the reader thread, that performs a blocking read to the driver

 the processing thread (which is awoken whenever the reader completes a read
successfully) to process the received data buffer and write the result to the driver

A hardware contention is simulated by creating an anomaly in the period of the kernel timer
to trigger the completion of the blocking read. See Figure 23.

Figure 23. MTT-API kernel example overview

Read thread Processing thread

Wait for
data

Wait for
data

Wait for
data

Wait for
data

Post
message

Process
data

Process
data

Driver

Read Return Write Return

Timer

Doc ID 024051 Rev 3 41/45

Kernel module example using MTT-API to generate traces

43

B.2 MTT API trace points

B.2.1 Checking the frequency and duration of the read operation (user
space)

Figure 24 shows a fragment of example code from the user space application.

Figure 24. Example code

The sample code in Figure 24 shows that when the read operation completes, the size of
the read is output to the trace stream by means of a call to mtt_trace().

To help the tools to identify this monitored value, use the hint feature in the API to give it the
label “read_size”. Alternatively, the hint field could be left as NULL and the record could be
located later using filter or search to isolate the location that issued this trace message,
although this is less convenient.

B.2.2 Notifying a quality of service problem with a simple string

A quality of service problem can be signalled using mtt_print().

mtt_print(comp_handle, MTT_LEVEL_WARNING, "Pipe underrun, data dropout\n");

B.2.3 Non-intrusive flagging of the read wait/wakeup in the kernel module

On the kernel side, instrument the code to flag the entry and exit of the wait list using named
signals.

mtt_trace(mtt_ior_handle, MTT_LEVEL_DEBUG,0, NULL, "wait_event");

wait_event_interruptible_timeout(wq, got_irq, timeout);

mtt_trace(mtt_ior_handle, MTT_LEVEL_DEBUG,0, NULL, "resume");

B.3 Building and installing on the board

Building this example is completed using a typical kernel module compile directive:

make -C $KDIR M=‘pwd‘ modules modules_install

Where $KDIR is the path to the configured kernel sources.

mtt_print(comp_handle, level, "Wait for data from driver...");

rdsiz = read (dev_fd, cur_buf->data, BUFF_SIZE * sizeof (int));

mtt_trace(comp_handle, MTT_LEVEL_USER0, MTT_TRACEITEM_UINT32, &rdsiz, "read_size");

Kernel module example using MTT-API to generate traces

42/45 Doc ID 024051 Rev 3

B.4 Output trace

Figure 25 shows a typical output.

In this example there are signals labelled data-read and data-write. The output from
these signals dump a sequence of comma separated integers that can subsequently be
used for statistical analysis with a tool such as a spreadsheet.

Figure 25. Output trace

Doc ID 024051 Rev 3 43/45

mttd

43

Appendix C mttd

By default, the mttd trace backend daemon is enabled for run-level 3 in Linux.

Use the configuration script in /etc/init.d to issue the regular service management
commands:

/etc/init.d/mttd {start|stop|reload|restart|force-reload|reload-or-restart}

Revision history

44/45 Doc ID 024051 Rev 3

Revision history

Table 5. Document revision history

Date Revision Changes

10-Jan-2013 1 Initial release.

22-May-2013 2

Updated for ATL rev 1.2.

Updates to Introduction on page 1.

Updates to Preface on page 6

Update to Figure 2 on page 10.

Updates to Chapter 2: Product installation on page 12 to reflect that
fact that the ATL rev 1.2 is distributed as three packages instead of
two.

Added Section 2.1: Dependencies on page 12.

Update to Table 4: Location of host tools on page 16.

Update to Section 2.4: Configure the kernel on page 16.

Update to Section 4.2: ATL GUI overview on page 22 to add more
information about the GUI perspective.

Update to Section 4.4: Tracing using printk on page 29.

Update to Section 4.5: KPTrace on page 31 to provide more
information about trace files.

Updates to Section 4.6: User traces on page 32.

Added Section 4.8: Generate trace in files on page 32.

Renamed Chapter 5: Command line mode on page 35.

Added Section 5.6: Launch KPTrace on page 36.

Added Section 5.7: Convert trace file to KPTrace text file on page 37.

Added Section 5.8: Launch KPTrace and log trace to trace port on
page 37.

Changed title of Appendix A: Program example using MTT-API to
generate traces on page 38.

Changed title of Appendix B: Kernel module example using MTT-API
to generate traces on page 40.

30-Oct-2013 3

Update to Chapter 2: Product installation on page 12.

Added note following Figure 6 on page 19.

Update to Figure 10 on page 23.

Update to Section 4.3.1: Configure and launch a trace session on
page 24.

Update to Figure 11 on page 24.

Update to Figure 16 on page 28.

Update to Figure 18 on page 31.

Update to Figure 19 on page 33.

Doc ID 024051 Rev 3 45/45

45

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Preface
	Document identification and control
	Documentation suite
	Conventions used in this guide
	Terms and acronyms
	Table 1. Acronyms used in this document

	Acknowledgements

	1 Product overview
	Figure 1. Overview
	Figure 2. Components generating traces on the board
	1.1 Supported use cases
	Table 2. Supported use cases

	1.2 Interfaces

	2 Product installation
	2.1 Dependencies
	Figure 3. Install Java and graphics libraries

	2.2 Installation
	2.3 Product directory tree
	2.3.1 Board directory tree
	Table 3. Location of board binaries

	2.3.2 Host directory tree
	Table 4. Location of host tools

	2.4 Configure the kernel
	Figure 4. Trace infrastructure in the kernel
	Figure 5. System trace module in the kernel
	2.4.1 Rebuild the kernel

	3 Required environment
	3.1 Trace capture over an STM port
	Figure 6. Typical setup when using trace capture over an STM port

	3.2 Data capture on local storage
	Figure 7. Typical setup when using trace capture on local file system

	4 Getting started
	4.1 Launch ATL GUI
	Figure 8. ATL workspace launcher

	4.2 ATL GUI overview
	Figure 9. ATL main view

	4.3 Trace session management
	Figure 10. Trace session configuration window
	4.3.1 Configure and launch a trace session
	Figure 11. Connect to a board
	Figure 12. Trace capture configuration

	4.3.2 Stop a trace session
	4.3.3 Restart a trace session
	4.3.4 Archiving a trace session
	Figure 13. Select export archive icon
	Figure 14. Export archive window

	4.3.5 Reading an archive
	Figure 15. Select import archive icon

	4.3.6 Saving input trace data
	Figure 16. Storing input traces in a raw STP format

	4.3.7 Other options
	4.3.8 Listen mode only

	4.4 Tracing using printk
	4.4.1 Enable printk trace capture when the board is running
	4.4.2 Enable printk from boot time onwards
	Figure 17. printk routed to MTT at boot time

	4.5 KPTrace
	Figure 18. Enabling KPTrace

	4.6 User traces
	4.7 Function I/O traces
	4.8 Generate trace in files
	Figure 19. Configure Session window

	5 Command line mode
	5.1 Launch ATL and configure daemon
	5.2 Launch ATL in listen-only mode
	5.3 Launch ATL and enable KPTrace
	5.4 Launch ATL and save trace file
	5.5 Reading a trace file
	5.6 Launch KPTrace
	5.7 Convert trace file to KPTrace text file
	5.8 Launch KPTrace and log trace to trace port

	Appendix A Program example using MTT-API to generate traces
	A.1 Example overview
	Figure 20. Example of MTT API usage

	A.2 Building the example
	A.3 Output trace
	Figure 21. Output trace
	Figure 22. Output in the GUI

	Appendix B Kernel module example using MTT-API to generate traces
	B.1 Example overview
	Figure 23. MTT-API kernel example overview

	B.2 MTT API trace points
	B.2.1 Checking the frequency and duration of the read operation (user space)
	Figure 24. Example code

	B.2.2 Notifying a quality of service problem with a simple string
	B.2.3 Non-intrusive flagging of the read wait/wakeup in the kernel module

	B.3 Building and installing on the board
	B.4 Output trace
	Figure 25. Output trace

	Appendix C mttd
	Revision history
	Table 5. Document revision history

